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Abstract—Scratchpad memory (SPM) provides a predictable
and energy efficient way to store program instructions and data.
It would be ideal for embedded real-time systems if not for
the practical difficulty that most programs have to be modified
in source or binary form in order to use it effectively. This
modification process is called partitioning, and it splits a large
program into sub-units called regions that are small enough to
be stored in SPM.

Earlier papers on this subject have only considered regions
formed around program structures, such as loops, methods and
even entire tasks. Region formation and SPM allocation are
performed in two separate steps. This is an approximation that
does not make best use of SPM.

In this paper, we propose a k-partitioning algorithm as a new
way to solve the problem. These allow us to carry out region
formation and SPM allocation simultaneously. We can generate
optimal partitions for programs expressed either as call trees
or by a restricted form of control-flow graph (CFG). We show
that this approach obtains superior results to the previous two-
step approach. We apply our algorithm to various programs and
SPM sizes and show that it reduces the execution time cost for
executing those programs relative to execution with cache.

I. INTRODUCTION

Instruction scratchpads (I-SPMs) are well-known as replace-
ments for instruction cache [1]. k bytes of SPM space take up
less physical space and require less energy than k bytes of
cache [2]. This is useful for any embedded system, but real-
time embedded systems also benefit from the predictability
of SPM [3], [4]. With SPM, access time is independent of
preceding memory accesses, an advantage for computing a
program’s worst-case execution time (WCET) [5].

However, programs must be modified to use SPM. The
program must be analyzed to determine which parts are most
frequently executed (in the average or worst case). These are
placed in SPM [6], [7]. There is a large performance difference
between the execution speed for code stored in external
memory and code stored in SPM [5], so it is insufficient to
store only the most frequently executed subset of the program
in SPM. If the program is too large for SPM, then the SPM
contents must change as the program is executed [8], [9].
This means dividing (partitioning) the program into sub-units
named regions, each with its own usage of SPM space [3].

This partitioning process is not as straightforward as it may
sound, and a lack of a scalable, systematic way to do it has

limited the adoption of SPM technology. This is particularly
noticeable in the real-time systems field, where researchers and
engineers continue to prefer to analyze the worst-case behavior
of cache-based systems, rather than adopt newer technology
that is inherently more predictable. The problem is a lack of
good tools. While SPM has many benefits which have been
demonstrated experimentally, it is not yet a useful building
block for further research or commercial products because
there are no commercial-grade tools for partitioning programs,
allocating SPM space, and subsequently performing WCET
analysis. We contrast this with the state of the art in WCET
analysis for cache-based systems: several high-quality tools
already exist [10].

Good tools are built around good algorithms, and in order to
develop high-quality tools for SPM program modification, we
must find a good algorithm for SPM allocation. The algorithm
must be able to generate a dynamic SPM allocation, i.e. one
that can change as the program executes. It must behave con-
sistently, being free of anomalies and pseudorandom behavior
that might be triggered unexpectedly by changes in the input
program. Ideally, it should be an optimal algorithm producing
the best SPM allocations possible according to some easily-
understood principle. Developers need tools that are well-
behaved; these in turn depend on well-behaved algorithms.

SPM allocation algorithms have been proposed before [2],
[3], [8], [11]. But these are approximate, suboptimal and
heuristic approaches. A common approach is two-step SPM
allocation, where regions are formed in one step, and SPM
space is allocated in the second, separately for each region.
This is an approximation, as is the choice to form regions
around program structures such as loops and methods.

The first contribution of this paper is a polynomial-time k-
partitioning algorithm for call trees that generates an optimal,
dynamic SPM allocation that minimizes the time cost for
transferring code into SPM, given a specific execution profile.
The second contribution is an extension of that algorithm to
support a restricted form of control-flow graph (CFG). We
compare our new algorithm with two-step SPM allocation and
with a cache-based solution.

In this paper we identify dynamic SPM allocation as a graph
k-partitioning problem and specify the properties of an optimal
solution (section II). We identify a suitable algorithm for k-



partitioning (section III). Unfortunately, this algorithm carries
two disadvantages. Firstly, it does not correctly account for the
time taken to move from one region to another, so we correct
this by proposing a new algorithm in section IV. Secondly, it
does not support any program representation other than a tree,
so we propose a new program representation to handle trees
with back edges, and a further algorithm extension in section
V. Section VI compares our new algorithm with previous work
by experiment, and section VII concludes.

II. DYNAMIC SPM ALLOCATION

Dynamic SPM allocation is a problem in the formal sense:
a statement requiring a solution by means of an algorithm.
Formally, a solution is some modification of the input program
to enable it to make use of SPM. We consider only solutions
that are valid in the sense that they can be implemented
without changing the meaning of the program. There are
usually many possible solutions; these form the solution space.

A solution has various associated metrics, such as its aver-
age and worst-case execution time, its total energy consump-
tion, its external memory requirements and the total amount of
information transferred between external memory and SPM.

Solutions may consider program instructions, program data
or both. Orthogonally, solutions may be dynamic or static. A
static solution specifies which code/data should be loaded into
SPM before execution begins; this mapping is not changed
during execution. A dynamic solution adds code to the pro-
gram to update the contents of SPM during execution. Each
instance of this code is a reload point.

An optimal solution minimizes one of the metrics, such that
no other solution in the solution space reduces the metric any
further. An optimal algorithm is an algorithm that produces
an optimal solution with respect to one metric.

A. Previous Work

An SPM allocation algorithm produces a solution to a
problem specified (at a minimum) by an input program and an
SPM size k bytes. Development of such algorithms has been
a research focus during the past decade. SPM allocation algo-
rithms are an important research issue for real-time systems
because of the need to maximize predictable performance [5].
They are also important for low-power embedded systems
because of the need to minimize energy while retaining the
ability to run complex applications [1].

Recent attempts to specify SPM allocation algorithms have
been fairly fruitful. Various metrics have been considered:
algorithms have been designed to minimize average execution
time [11], energy consumption [6], and worst-case execution
time [3]. Static [7] and dynamic [9] solutions have been
considered. Solutions have considered program instructions [3]
and program data [4]. SPM allocation algorithms have even
been specialized to particular forms of data access, such as
arrays used by loops [12], and specific sorts of instruction
sequence, such as traces [2].

Static SPM allocation algorithms can be optimal. For in-
stance, in [6], a static solution is generated by solving a
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Fig. 1. A simple control-flow graph (CFG) with three reload points. Each
edge is marked with its execution frequency when the program is executed.
Each of the three regions [v0, v1], [v2] and [v3, v4] are shaded differently:
edges containing reload points are marked in bold.

knapsack problem [13]. The solution generated is optimal
with respect to average execution time or energy consumption,
given average execution profile data.

However, previous dynamic SPM allocation algorithms are
not claimed as optimal. They rely on heuristic algorithms
that do not check or prune the entire solution space, instead
greedily seeking a solution without backtracking [3], [4],
or deferring allocation decisions to runtime heuristics [8].
Some also restrict reload points to specific locations (e.g. loop
entry/exit [3], trace entry/exit [2]).

A common design pattern is identified by ourselves as two-
step SPM allocation. In a two-step process, reload points are
determined in a first pass over the program, and then SPM
allocation is carried out separately for each sub-unit of the
program that is separated from the others by reload points. We
call these sub-units regions. The two-step process is typical of
many previous works [3], [9], [14] and it is suboptimal because
the dependency between the two steps (region formation,
allocation) is not truly unidirectional. For an optimal solution,
the two problems have to be solved together.

B. Formal Description of Problem
A program may be described by a control-flow graph

(CFG). Figure 1 shows a simple program’s CFG with three
reload points: at the entrance (the root, v0), before v2 and
before v3. These form regions [v0, v1], [v2] and [v3, v4].

The CFG G = (V,E) consists of vertexes v ∈ V , and
control-flow edges (vx, vy) ∈ E. As G represents a program,
the vertexes v0, v1, ..., vn−1 represent blocks of code (typically
basic blocks [15]). Each vertex v has a size given in bytes,
which is represented by the vertex size function S(v).

An edge (vx, vy) represents a transition between two blocks
vx and vy , caused by the control flow in the program. The
function W (vx, vy) represents the edge weight of that edge:
the number of times it is taken during execution.

A set partition R is a collection of disjoint subsets of V
whose union is V [16]. Each of these subsets is known as
a region. Each region has a different SPM allocation. Reload
points are created on every edge (vx, vy) that leads from one
region to another.

We define R as a mapping from each vertex v ∈ V to a
unique identifier r which is assigned to each region, so that
R : v → r. An edge (vx, vy) has a reload point if (and only
if) R(vx) 6= R(vy).

For convenience, we have a shorthand form to represent
R. For Figure 1, the partition R can be expressed as R =
[[v0, v1], [v2], [v3, v4]].



Each region r has a size S(r) given in bytes, calculated as
the sum of the sizes of all vertexes within r:

S(r) =
∑

∀v∈V.R(v)=r

S(v) (1)

Any R is a solution to the problem described by the CFG G
and the SPM size k bytes. The solution is valid if ∀r.S(r) ≤ k,
i.e. no region is larger than the available SPM space.

C. Graph Partitioning
Dynamic SPM allocation can be represented as a graph

k-partitioning problem. In general, the solution to a graph
partitioning problem is a set partition R that minimizes some
criteria (usually the sum of inter-region edge weights) while
respecting some bound on the size of each region [17].

However, most graph partitioning algorithms are not suitable
for the dynamic SPM allocation problem. They can be divided
into two classes. Balanced graph partitioning algorithms aim
to divide the graph into m regions of approximately the same
total size [18], [19]. Unbalanced graph partitioning algorithms
aim to divide the graph into exactly two regions with a given
size ratio [20].

Balanced partitioning produces results that are far from
optimal when applied to SPM allocation. Balanced region sizes
are unimportant; what matters is the hard limit k on the size
of each region.

Unbalanced partitioning produces somewhat better results,
as we can repeatedly divide a graph until we reach regions
small enough to be placed in SPM, and one paper on dynamic
SPM allocation used exactly this technique [11]. Unfortunately
the result is only approximate. Each division or cut may
be locally optimal, but in graph problems, repeated locally-
optimal decisions may not lead to the global optimum.

A third class of graph partitioning algorithm is required.
This is k-partitioning, where each region size is bounded
by k. k-partitioning has not been explored as thoroughly
as balanced and unbalanced partitioning, but some previous
work exists [21]–[23]. As far as we know, k-partitioning has
not previously been formally identified as a solution for the
problem of SPM allocation.

D. Our Metric
In this paper, we consider a dynamic SPM allocation prob-

lem as consisting of a program G = (V,E), an edge weight
function W (vx, vy), an SPM size k, and a bus transfer time
function L(s). The bus transfer time function gives the amount
of time needed to transfer s bytes from external memory to
SPM on the intended platform for G.

We consider an optimal solution to this problem to be
R, a set partition of V that minimizes the total time spent
transferring data from external memory to SPM. We can
formally define this as a cost function:

Γ(R) =
∑

∀(vx,vy)∈E.R(vx)6=R(vy)

W (vx, vy)L(S(R(vy))) (2)

Minimizing Γ(R) is equivalent to minimizing the typical
execution time of the program, because Γ(R) is the only aspect

of the program that is changed by partitioning, as we assume
that the whole of each region is stored in SPM.

We know there is no value in running any part of the pro-
gram from external memory; if some part is rarely executed,
then that part should be in its own region.

We assume that reload points do not change the size of
the program. We also assume that the edge weight function
W (vx, vy) is sufficient to describe the program. This requires
that the program be bounded; infinite loops and infinite re-
cursion are not supported. A solution R is generated with
respect to a single execution path, so our optimal solutions
do not minimize the WCET unless the worst-case execution
path (WC path) is unaffected by partitioning [24]. We do not
consider the possibility that the WC path may change as a
result of partitioning, though WCET analysis can be performed
on the solution, and may guide the generation of a new
edge weight function W (vx, vy). It is probably not feasible
to generate a k-partition that minimizes the WCET. Though
hill-climbing approaches can be used to reduce WCET [3],
[4], [24], they are two-step allocation algorithms that rely on
WCET analysis as part of evaluating Γ(R).

E. Further Definitions

The bus transfer time function gives the length of time
needed to transfer s bytes across the bus from external memory
to SPM. L(s) is commonly defined as follows [3], [5]:

L(s) = setup time + d s

bus bandwidth
e (3)

or (equivalently) L(s) ≡ s + setup time × bus bandwidth.

III. k-PARTITIONING

A graph k-partitioning algorithm produces a partition R
for a program G = (V,E), given an edge weight function
W (vx, vy) and a vertex size function S(v), in order to min-
imize the value of a cost function Γ(R) while respecting an
upper bound k on the size of each region.

Currently, there is no known general k-partitioning al-
gorithm which can operate on any graph. It is likely that
the problem is NP-hard, as balanced graph partitioning is
NP-hard [19]. We note that with k-partitioning the optimal
number of regions is initially unknown, whereas balanced
graph partitioning assumes a specific number of regions.

We can generate k-partitions by exhaustive search, by
assigning a Boolean value to each graph edge to represent
whether that edge is a reload point or not, and then searching
through all 2|E| possible assignments for those Boolean values.
Some of the regions generated in this way may be larger than
k; others may be invalid in that vertexes on both sides of some
reload point are in the same region. Clearly, this will be an
O(2|E|) search, and intractable for most programs.

Even a simple program such as one of the well-known
Mälardalen Real-time Technology Center (MRTC) bench-
marks [25] may contain hundreds of edges between basic
blocks: far too many for exhaustive search.

Some graph partitioning problems can be expressed as inte-
ger linear programming (ILP) problems, with binary variables
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Fig. 2. A call tree containing 6 methods. Vertexes represent methods: each
is labeled with its size. Edges represent call/return relationships between
methods: each is labeled with its frequency.

representing region membership [26]. The representation is
solved to minimize transition costs using well-known ILP
solver algorithms. k-partitioning can be expressed in this way,
but the number of variables and constraints is O(|V |2) because
there may be up to |V | regions as well as |V | vertexes.

A. k-Partitioning For Trees

A class of polynomial-time (P -time) k-partitioning algo-
rithms exist for specific types of graph, namely trees. These
are now discussed.

A tree is a graph in which each vertex vy has exactly one
entrance edge, with the exception of the root v0, which has no
entrance edges at all. The source of this entrance edge is called
the parent, vx. As a consequence of this property, trees contain
no cycles, and there is exactly one path from the root to any
vertex. We shall return to the impact of these restrictions in
section V-A. In the meantime, we observe that any program
can be represented as a call tree in which every vertex is a
method and every edge represents a call/return relationship
between two methods, i.e. (mx,my) ∈ E means method mx

calls method my .
Figure 2 shows a call tree for a simple program. In this

tree, each vertex represents a method. The root m0 represents
the entry method (e.g. main() in a C program). Each vertex is
labeled with its size (e.g. method m0 has size 23, so S(m0) =
23) and each edge is labeled with its weight (e.g. m1 is called
3 times from m0, so W (m0,m1) = 3).

We use mx,my in place of vx, vy to highlight the distinction
between the call tree representation of the program and a
general graph representation. As Figure 2 is a call tree, each
edge is bidirectional, with W (mx,my) = W (my,mx).

Kundu and Misra [21] specify an algorithm to produce
optimal k-partitions of graphs in O(n) time for an n-vertex
tree, provided that each edge weight W (vx, vy) = 1.

A branch and bound algorithm given by Leupers and
Marwedel [23] allows arbitrary edge weights, and prunes the
search space by enforcing limits on (a) the region size k, and
(b) the value of the best solution found so far. The problem
is that the runtime of the algorithm is still O(2n) in the worst
case, which is likely for large k.

B. Lukes’ Algorithm

Lukes [22] gives a P -time solution for optimal k-
partitioning that allows arbitrary edge weights. The time
complexity is O(k2n). Like the Kundu and Misra algorithm,
Lukes’ algorithm requires a program expressed as a tree.
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Fig. 3. Figure 2, partitioned for k = 100. Each region is shaded differently:
reload point edges are marked in bold.

Lukes’ algorithm produces an optimal partition R for the
tree G = (V,E) which minimizes the number of inter-region
transitions, calculated as a sum of the weights of all edges that
connect one region to another. This is related to, but is not
the same as Γ (equation 2). The new definition is:

Γ′(R) =
∑

∀(mx,my)∈E.R(mx)6=R(my)

W (mx,my) (4)

Trees are important to the Kundu, Misra and Lukes algorithms
because they solve the partitioning problem by divide-and-
conquer. They proceed from the leaves to the root, determining
optimal partitions for successively larger subtrees.

Lukes’ algorithm allows a large program to be solved
quickly but approximately by scaling every method size and
k by some constant factor. This is ideal for use within a
compiler; the default setting can be a fast but approximate
allocation, with a slower, optimal allocation available through
command-line parameters to adjust the scale factor.

For k = 100 and Figure 2, the output of Lukes’ algorithm
is R = [[m0,m2,m4], [m1], [m3,m5]]. This appears on
the graph as shown in Figure 3. There are three regions in
the partition. One is [m0,m2,m4], with combined size 58.
Another is [m1], with size 91. The third is [m3,m5], with size
46. The partition contains Γ′(R) = 5 inter-region transitions:
3 between m0 and m1, and 2 between m0 and m3.

C. Lukes’ Algorithm in Detail

Data structures. Lukes’ algorithm is based on a data type
D, defined as D : (m, s) → R, i.e. a mapping from a key
(m, s) onto a data item R. The keys consist of a vertex m ∈ V
and a size s ∈ [0, k]. The data item is a partition R for the
subtree rooted at m, in which s = S(R(m)), i.e. the size of
the region containing m is s. There is at most one data item
per key, and R = ∅ for unknown keys.

An update procedure is defined which substitutes a new
partition R into a variable d ∈ D, but only if that partition
has a better value (Γ′) than the previous occupant:

procedure update(d,m,R):
s← S(R(m))
if (d(m, s) = ∅ or Γ′(d(m, s)) > Γ′(R)):
d(m, s)← R

endif
if (d(m, 0) = ∅ or Γ′(d(m, 0)) > Γ′(R)):
d(m, 0)← R

endif
endproc

Lukes proved that it is only necessary to store the best
value R for any particular (m, s) in order to eventually



reach an optimal R for the whole graph. The efficiency of
the algorithm depends on its rejection of inferior partitions.
The second conditional statement within update ensures that
d(m, 0) contains the best value R known for m as a whole.

Operations. For each vertex mx and each child my , Lukes’
algorithm combines the known partitions for mx with the
known partitions for my . This is done in two ways:

Concatenation creates a region boundary on the edge
(mx,my). The best known partition containing my , d(my, 0),
is combined with a partition containing mx, d(mx, s).

Merging creates a partition d(mx, sx + sy) from two parti-
tions d(mx, sx) and d(my, sy). This is done by concatenating
the partitions and then merging the region containing my with
the region containing mx.

Lukes proved that these two operations were sufficient if
they are executed for every possible combination of sizes.

Algorithm. Initially, d ∈ D is populated with a trivial
partition for each vertex:

foreach m ∈ V :
d(m,S(m))← [[m]]

endfor
Then, each vertex mx ∈ V is visited in depth order:

foreach mx ∈ V , deepest first:
foreach my where (mx,my) ∈ E:
d′ ← copy← d
foreach sp in [0, k]:

update(d′,mx, d(mx, sp) + d(my , 0))
foreach sc in [1, k − sp]:
R← d(mx, sp) + d(my , sc)
merge R(mx) and R(my)
update(d′,mx, R)

endfor
endfor
d← copy← d′

endfor
endfor

The loops visit every vertex mx, every edge from that vertex
(mx,my), and every known partition containing mx of size
sp. At that point, concatenation is attempted to produce a new
d(mx, sp) including the my subtree. Then, inside the inner-
most loop, each d(mx, sp) is merged with each d(my, sc).

When the algorithm is complete, the optimal partition R =
d(m0, 0), where m0 is the root.

Time complexity. Lukes’ algorithm has O(k2n) time com-
plexity. This is derived from three nested loop iterations: for-
each sc (k times), foreach sp (k times), and the two outermost
loops, which have a combined total of n − 1 iterations for a
tree containing n methods, as such a tree contains n−1 edges.

This time complexity requires merging, concatenation and
evaluation of Γ′(R) to be O(1) operations. We achieve this
by representing partitions as binary trees and storing partially-
evaluated copies of Γ′(R) for successive subtrees. The details
of these optimizations can be found within the source code of
our experimental implementation (section VI).

IV. INCORPORATING LOADING COSTS

Lukes’ algorithm solves a problem, but it is not the same
problem as dynamic SPM allocation. Γ′(R) is minimized, but
a solution that minimizes Γ′(R) does not necessarily also
minimize Γ(R).
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R1 = [[m0,m2], [m1], R2 = [[m0,m2], [m1],
[m3], [m4,m5]] [m3], [m4], [m5]]

Γ′(R1) = 108 Γ′(R2) = 125
Γ(R1) = 1716 Γ(R2) = 1440

Fig. 4. A call tree partitioned in two different ways. Partition R1 is chosen
to minimize Γ′(R1), while R2 is chosen to minimize Γ(R2). The size of
each vertex is 4, k = 8, and L(s) = s.

A. Example
Figure 4 shows a call tree partitioned (a) by using Lukes’

algorithm to minimize Γ′, and (b) by using exhaustive search
to minimize Γ. Since Figure 4 is a call tree, each edge is
bidirectional, i.e. W (mx,my) = W (my,mx).

Notice that R1 and R2 are not the same, and not equivalent
in terms of Γ′ and Γ. R1 is better for Γ′ while R2 is better
for Γ. If minimizing the number of inter-region transitions
is most important, then it is best to merge m4 and m5.
However, if minimizing the cost of inter-region transitions is
most important, then m4 and m5 should be separate. Without
this separation, both would need to be loaded together 103
times on the (m2,m4) edge.

Lukes’ algorithm is therefore not optimal with respect to Γ.
We must adapt it in order to minimize Γ; the cost of inter-
region transitions is not fixed (as in Γ′) but dependent on the
destination region size (as in Γ).

B. Obvious, Incorrect Solution
The obvious solution is to substitute Γ(R) for Γ′(R) within

the update method of Lukes’ algorithm (section III-C).
This would require us to take into account the cost of

entering a region at the root of a subtree mx, because this
cost is not constant when Γ(R) is used, being dependent on
S(R(mx)). We do that by (1) defining R(mw) as a null region
of zero size for all mw that are not in R, and (2) adding an
entry edge for the entire tree, (∅,m0), with W (∅,m0) = 1.

Unfortunately, though accounting for region entry costs is
important, it is not enough for a correct solution. Figure 5(a)
is a call tree that has been partitioned using Lukes’ algorithm,
using Γ(R) in place of Γ′(R). For this partition, Γ(R) = 6292.
However, this is not the optimal partition. The actual minimum
Γ(R′) = 6208 with the partition shown in Figure 5(b).

The problem is that Γ(R) is not a single value because the
region containing the current subtree root mx can still grow in
size (unless mx = m0). The size S(R(mx)) affects the value
of the partition, but whilst R(mx) can still be extended, we
have only a lower bound for this size.
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Γ(R) = 6292 Γ(R′) = 6208

Fig. 5. (a): a non-optimal partition R, generated by substituting Γ into Lukes’
algorithm. (b): the partition R′ chosen to minimize Γ(R′). The size of each
vertex is 4.

There is an expansion value α representing the combined
weight of methods that may be added to R(mx) in future.
Figure 5(a) is a result of the assumption that expansion will
not change S(R(mx)), and hence the optimal partition for
α = 0 is the same for all other α. In fact, the optimal partition
is highly dependent on α.

Consider the subtree with root m1. While processing m1,
the algorithm considers two possible partitions, Ra and Rb,
starting with regions [m1,m3,m6] and [m1,m2,m3] as seen
in Figure 5. The first region R(m1) has size 12 in each case,
so these possibilities are both stored in data structure element
d(m1, 12). At some point, update will need to choose between
them, and this choice will be based upon the value of Γ(R).

Now suppose that the size S(R(m1)) = 12+α. The values
for Ra and Rb are:

Γ(Ra) = 102(12 + α+ 4) + 1(4 + 8) + 210(12 + α

+ 4) + 1(12 + α+ 8) = 5024 + 313α (5)
Γ(Rb) = 1(12 + α+ 8) + 256(12 + α+ 8)

+ 1(12 + α+ 8) = 5160 + 258α (6)

Lukes’ algorithm makes the wrong choice because it assumes
that α = 0, i.e. that there is no expansion. In this situation,
Ra is better (5024 versus 5160). But in fact R(m1) will
be expanded to include m0, so α = S(m0) = 4. In this
situation, Rb is better (6192 versus 6276). The choice leads to
a suboptimal result. More complex counter-examples involving
larger graphs exist, but all follow this general form.

The substitution fails because it assumes that α = 0 and
therefore that R1 is always optimal. The failure may be
observed whenever two incomplete partitions have the same
subtree root (m) and the same size (S(R(m))) but two or
more different optimal partitions for different α. It is therefore
essential to store different partitions for different α as well as
different first region sizes.

C. Extended Lukes’ Algorithm - 1

In this section, we describe an extension to Lukes’ Algo-
rithm which we call Extended Lukes Algorithm - 1 (ELA-
1) which enables the use of Γ(R) as a cost function. The
algorithm uses a new data type D′ : (m, s, α) → R. That is,
as well as being identified by subtree root (m) and first region
size (s), incomplete partitions are identified by expansion value
α. The new update′ procedure takes α into account:

procedure update′(d,m, α,R):
s← S(R(m))
S(R(m))← s+ α
if (d(m, s, α) = ∅ or Γ(d(m, s, α)) > Γ(R)):
d(m, s, α)← R

endif
if (d(m, 0, 0) = ∅ or Γ(d(m, 0, 0)) > Γ(R)):
d(m, 0, 0)← R

endif
endproc

The new algorithm is as follows. Initially, d ∈ D′ is
populated with a trivial partition for each vertex and for each
possible expansion value:

foreach m ∈ V :
foreach α in [0, k − S(m)]:
d(m,S(m), α)← [[m]]

endfor
endfor

Then, each vertex mx ∈ V is visited in depth order. This
involves a new loop in which all possible expansion values
are tested:

foreach mx ∈ V , deepest first:
foreach my where (mx,my) ∈ E:
d′ ← copy← d
foreach sp in [0, k]:

foreach α in [0, k − sp]:
update′(d′,mx, α, d(mx, sp, α) + d(my , 0, 0))
foreach sc in [1, k − sp − α]:
R← d(mx, sp, α) + d(my , sc, α)
merge R(mx) and R(my)
update′(d′,mx, α,R)

endfor
endfor

endfor
d← copy← d′

endfor
endfor

Intuition. The difference between Γ and Γ′ is the depen-
dence on region sizes. The optimal partition for a subtree may
depend on the size of the region at the subtree root, and this
region can include the parent of the subtree and other vertexes.
The size of this expansion is α. We compute optimal partitions
for all possible α values at each subtree and so handle all
possible region sizes. No partition is eliminated unless a more
valuable alternative has been found.

ELA-1 is equivalent to Lukes’ algorithm if Γ′(R) is used in
place of Γ(R). This is because Γ′(R) is independent of region
size and therefore α.

Time Complexity. ELA-1 has O(k3n) time complexity,
i.e. k times more than Lukes. This is because of the additional
loop iteration (foreach α).

Not all values of α ∈ [0, k−sp] are possible for any partic-
ular tree and mx, but it is not easy to work out which α values
can occur, because this involves all connected combinations of
methods outside of mx’s subtree. In any case, the worst case



is O(k) possible values. Our implementation simply considers
all α ∈ [0, k − sp] (section VI).

V. INCORPORATING PROGRAM STRUCTURE

ELA-1 solves the problem of minimizing Γ(R) for a pro-
gram G = (V,E), but it relies on an approximation, because
the program has to be represented as a call tree. The solutions
it produces are only optimal for this representation; they are
not necessarily optimal for more general forms such as control-
flow graphs (CFGs).

A. Representing Programs as Call Trees

Lukes’ algorithm and ELA-1 both require the input program
graph G = (V,E) to be a tree. In section IV we represented
programs as call trees.

All programs can be expressed as call trees, as cycles due
to recursion can be converted into loop iteration, and multiple
paths from the root m0 to some method mi can be removed
by cloning a subtree on the path between m0 and mi.

The main issue with a call tree representation is that it omits
the internal structure of methods. A method is regarded as
an indivisible unit. While it may call other methods with a
known frequency, there is no information about the order of
these calls, nor any information about what parts of the method
may be executed before or after each call.

This is an approximation with serious disadvantages. Firstly,
a method m may be too big for SPM storage (i.e. S(m) >
k), in which case Lukes’ algorithm and ELA-1 cannot find
any solution at all, as there is no way to divide methods into
smaller units. Secondly, methods that do fit in SPM are entirely
loaded on every entry, even if internal control flow means that
parts of the method are rarely executed. Thirdly, parts of a
method may be entirely unreachable if the method is entered
by a return operation. For instance, consider a method mx

containing three statements:
method mx:

A
call (my)
B

endmethod

If my is in a different region to mx, then returning from
my will cause all three statements to be reloaded, including
A, even though A is now unreachable.

The call tree representation is lacking any notion of se-
quence. There is no information about the order of operations.
With a call tree, an SPM allocation algorithm cannot make use
of knowledge about the order of events in the program.

B. Unsuitability of Syntax Trees

A call tree representation may be approximate, but programs
can be represented by other types of trees. One option is a
syntax tree, which expresses the structure of a method [15].
Figure 6 gives an example of this form.

Syntax trees specify the sequence of operations. They are
“executed” in depth-first order from left to right, so B follows
A in Figure 6. Certain nodes (e.g. if, while) have special
meanings which alter the order of execution for the children.

m0

A Fwhile if

B C D E

test body test body

method m0:
A
while B:

C
endwhile
if D:

E
endif
F

endmethod

Fig. 6. Left: a syntax tree for the method m0. Right: the definition of m0.
The tree is “executed” in depth-first order from left to right.

For instance, E is only executed if D “returns” true, and the
sequence B-C repeats until B “returns” false.

By decomposing methods into their constituent primitives,
such as loops, conditions and expressions, the syntax tree
representation allows ELA-1 to produce a partition which is
closer to the optimal. No changes to ELA-1 are required; the
syntax tree is just passed to ELA-1 as if it were a call tree.
This allows ELA-1 to handle methods that are too large to be
stored in SPM.

However, the resulting partition is still only approximately
optimal, because ELA-1 is not able to make use of the
sequence information, only the structural information (e.g. m0

contains A, F). It is impossible for ELA-1 to create any
partition containing the regions [A, while] and [if, F] because
these two regions are not internally connected via the root
m0. But such a partition would be valid within the syntax
tree representation, because a reload point could be placed
between “endwhile” and “if D” (Figure 6). The algorithm
cannot generate all valid solutions so we cannot rely on it
to find the optimal solution.

C. Unrolling a Control-Flow Graph

ELA-1 and Lukes’ algorithm provide one way to make use
of sequence information. The program graph G = (V,E) can
be converted to a tree by a process of unrolling.

All of the paths through a program form a tree. The program
entrance is the root: each conditional branch effectively splits
control flow in two directions. Each vertex v ∈ V contains
a small fragment of code (e.g. a basic block) and edges
(vx, vy) ∈ E represent transitions between basic blocks. We
call this a control-flow tree (CFT). It is identical to a CFG
where each vertex has one parent (except the root v0, with
no parents). Figure 7 shows the CFT for Figure 6 assuming a
maximum of two while loop iterations.

The CFT can be partitioned using ELA-1, and the result
R will be a precisely optimal solution (in terms of Γ(R))
which can be applied to the original program without any
approximation because reload points could be introduced
before any basic block.

However, the CFT will contain O(2β) vertexes for a pro-
gram containing β branches. This is not practical. A program
containing no branches at all (i.e. a single-path program [27])
might be an exception, but even in that special case, method



m0 A B

C

D

B

C

D

B D

E

F

E

F

E

F

F

F

F

Fig. 7. The CFG for Figure 6, unrolled to produce a control flow tree (CFT)
assuming a maximum of two while loop iterations. Note that there are six
copies of statement F because six different paths from m0 lead to F.

m0 A while

B C

D E

F

if

B = { (B, while), (C, while), (D, if), (E, if), (F, m0)}

Fig. 8. Top: the CFT for Figure 6. Bottom: back edges stored in a separate
data structure B.

calls/returns would need to be inlined for the purposes of
generating the tree.

D. Back Edges

With the exception of the unrolling technique, tree represen-
tations always involve some approximation which means that
an optimal solution generated by ELA-1 is not necessarily
optimal when applied to the original program.

We propose a new program representation comprising a
CFT, G = (V,E) and a set of back edges B : vy → vx.
Back edges can be used to implement loops, method calls,
and (generally) any place where multiple code paths merge
together. We define a back edge as a link between a vertex vy
and vx, where vx is some ancestor of vy (i.e. parent, grandpar-
ent, great-grandparent, etc.). We call this representation CFT
+ BE: control flow tree, plus back edges.

A CFT is produced as described in section V-C, but every
edge (vx, vy) in which vy is an ancestor of vx is deleted and
replaced by a back edge, instead of replicating vy . This is
achieved by storing the contents of the path from v0 to vx in
some rapidly-searchable data structure such as a hash table.
Figure 8 shows the CFT and B for Figure 6.

A back edge (vy, vx) ∈ B has an edge weight W (vy, vx)
just like a regular edge (vx, vy) ∈ E. The cost function Γ(R)
should consider both types of edge together.

E. Extended Lukes Algorithm - 2

Extended Lukes Algorithm - 2 (ELA-2) adds support for
our CFT + BE program representation. It makes use of the
functions of ELA-1 described in section IV-C. As ELA-
2 processes a non-approximate representation of a program
(e.g. Figure 8) it is capable of producing partitions which
can be mapped directly onto the machine code of the input
program, implementing an optimal dynamic SPM allocation.

We found that it is necessary to decide a priori which back
edges will be inter-region transitions. Otherwise, the cost of
these edges cannot be accurately incorporated by ELA-1. The

problem is that the true value of a back edge (vy, vx) does not
become apparent until region assignment is complete for vx.
Consequently, the update′ method may reject solutions that
only turn out to be good once vx is processed. There is no
straightforward solution for this problem. It is not a matter of
adding some sort of expansion value like α because the back
edge cost may be zero if the loop is complete.

Algorithm. We assign a Boolean value b(vy, vx) to each
back edge (vy, vx) to represent whether that edge is a reload
point or not. We execute ELA-1 for each of the 2|B| possible
assignments for those Boolean values, producing up to 2|B|

different partitions R. ELA-2 returns the R with the lowest
Γ(R), this being the optimal solution. ELA-2 is equivalent to
ELA-1 if there are no back edges.

Time Complexity. ELA-2 has O(2|B|k3n) worst-case time
complexity, i.e. 2|B| times more than ELA-1.

In practice we can make a few optimizations that make the
algorithm manageable. Firstly, some back edges are certainly
reload points, because the total size of the vertexes on the path
from vy to its ancestor vx is greater than k. Secondly, two
Boolean values b(vy1 , vx1

) and b(vy2 , vx2
) are independent

if vx1 and vy1 cannot be part of the same region. This
independence allows subtrees to be solved separately. We plan
to investigate these possibilities in the future.

VI. IMPLEMENTATION AND EXPERIMENTS

ELA-2 produces an optimal partition R of a program that
minimizes Γ(R), the total time spent transferring data from
external memory to SPM. In this section, we demonstrate its
capabilities by experiment. Source code for experiments may
be downloaded from http://www.cs.york.ac.uk/rts/rtslab/.

Our experimental comparisons consider a local memory size
k, an input program G = (V,E), and a definition of the
bus transfer time function L(s). Unless stated otherwise, the
experiments assume that the time taken to transfer s bytes of
data across the bus is L(s) = 20 + s. We vary the SPM size
k ∈ {128, 256, 512, 1024, 2048, 4096}. The input programs
are benchmark software taken from the Mälardalen Real-time
Technology Center (MRTC) collection [25].

For each experiment, we take one program from the bench-
mark collection and compile it for ARM using LLVM version
2.6 [28]. Optimization level -Os is used. We apply the LLVM
opt -loop-extract command to the intermediate code in
order to exline each loop into a separate method [29]. The
ARM binaries are executed using the Gem5 simulator [30]
to produce a trace of instruction addresses, accessed by the
program as it runs. Only main() and functions called by main()
are traced.

A. Two-step dynamic SPM allocation versus ELA-2

In this section, we compare a two-step SPM allocation
process with ELA-2. Earlier dynamic SPM allocation algo-
rithms are two-step, so this is a comparison between ELA-2
and a whole class of possible algorithms (section II-A). The
instruction address trace for each input program is used to
construct a CFT + BE representation as described in section



64 128 256 512 1024 2048 4096
binarysearch 2.30 1.29 1.22 1.22 1.22 1.22 1.22
bsort100 1.43 1.21 65.9 69.9 69.9 69.9 69.9
crc 1.34 1.22 63.3 64.6 102 102 102
edn 1.28 2.04 2.64 3.81 10.8 16.0 16.1
fir 2.54 1.51 1.23 8.48 8.48 8.48 8.48
insertsort 1.47 1.38 9.07 9.67 9.67 9.67 9.67
jfdctint 2.16 3.24 1.86 1.12 1.17 1.17 1.17
matmult 1.75 1.22 18.0 149 153 153 153

TABLE I
THE RATIO

Γ(RTWOSTEP)

Γ(RELA-2)
FOR VARIOUS PROGRAMS AND VARIOUS k.

V-D. This is passed to ELA-2 with SPM size k. The result is
a partition RELA-2 and a value Γ(RELA-2).

For the first step of two-step allocation, we create one
region for each method in the program. Some of these
methods are also methods within the C source code; others
were originally loops that have been exlined by LLVM’s
opt -loop-extract operation. Thus, our region formations
match those used in previous work [3], [8].

For the second step, we allocate SPM space within each
method according to a profile captured from the instruction
address trace. Instructions are allocated to SPM in descending
order of execution frequency. As some instructions may not
fit in SPM, the result cannot be expressed as a partition
R, but we can nevertheless evaluate the equivalent of Γ(R),
which we call Γ(RTWOSTEP) and define as the total time
spent transferring data from external memory to SPM during
execution.

Table I shows the ratio of Γ(RELA-2) and its two-step
equivalent Γ(RTWOSTEP) for two-step allocation, given var-
ious benchmarks and various k. Ratios larger than 1.0 mean
that ELA-2’s partition has a lower time cost. We see that ELA-
2 has a large advantage, except for very small k.

ELA-2’s advantage is a result of creating regions and allo-
cating SPM space at the same time. ELA-2 finds the optimal
region size rather than just the optimal allocation for a region
of fixed size. It naturally expands regions to include multiple
loops and multiple methods. Two-step allocation could be
extended to expand regions by merging, but this would be
an awkward and approximate extension, involving a feedback
loop between the two steps.

B. ELA-1 versus ELA-2

We compare ELA-1 and ELA-2 as follows. Firstly, the value
Γ(RELA-2) is produced for each program as described above.
Then, Γ(RELA-1) is produced from a call tree representation
of each program, consisting of methods and exlined loops.
RELA-1 is undefined if the size of some vertex in the call

tree is larger than k. When this occurs, Γ is also undefined,
and we leave a gap in Table II.

Table II shows the ratio between Γ(RELA-2) and Γ(RELA-1).
We see that the two are sometimes very close to each other;
this is common for larger values of k. But because methods
and loops are indivisible, ELA-1 cannot produce the very best
solutions, and cannot operate at all if some vertex is larger than

64 128 256 512 1024 2048 4096
binarysearch - - 1.04 1.04 1.04 1.04 1.04
bsort100 - 1.24 1.39 1.04 1.04 1.04 1.04
crc - - 2.20 1.30 1.18 1.18 1.18
edn - - - - 5.22 1.75 1.16
fir - - 1.30 1.06 1.06 1.06 1.06
insertsort - - 10.1 1.04 1.04 1.04 1.04
jfdctint - - - 1.34 1.27 1.11 1.11
matmult - 1.27 1.15 1.48 1.04 1.04 1.04

TABLE II
THE RATIO

Γ(RELA-1)

Γ(RELA-2)
FOR VARIOUS PROGRAMS AND VARIOUS k.

64 128 256 512 1024 2048 4096
binarysearch 2.73 2.25 2.21 2.21 2.21 2.21 2.21
bsort100 2.55 0.94 2.09 2.22 2.22 2.22 2.22
crc 1.33 1.08 2.07 1.46 2.05 2.05 2.05
edn 1.17 1.32 1.19 1.82 2.11 1.95 1.69
fir 1.63 1.69 0.81 2.02 2.02 2.02 2.02
insertsort 2.03 1.59 1.95 2.08 2.08 2.08 2.08
jfdctint 1.50 1.48 1.33 1.94 1.91 1.81 1.81
matmult 1.94 1.47 2.75 5.79 1.85 1.85 1.85

TABLE III
THE RATIO

Γ(RCACHE)

Γ(RELA-2)
FOR VARIOUS PROGRAMS AND VARIOUS k.

k. Table II is evidence of the call tree disadvantages discussed
in section V-A. However, ELA-1 does have the significant
advantage of algorithmic efficiency, with P -time complexity.

C. Cache versus ELA-2

In this section, we compare a direct-mapped cache of size
k with ELA-2. A cache comparison is worthwhile to put SPM
results into a wider context, as caches are a well-understood
technology, though we must remember that Γ(RCACHE) is
very different to Γ(RELA-2). Cache operations are entirely
dynamic, so the contents of the cache are not fixed at any
point in the program. In contrast, the SPM allocation is fixed
for every point in the program. This difference means that a
range of execution times are possible for cache simulation.

The size of the cache line c is an additional parameter that
affects Γ(RCACHE) in two ways. Firstly, the cost of each cache
miss is L(c). Secondly, programs that access sequential data
may incur fewer misses if the line size is increased. Therefore,
we try various cache line sizes c ∈ {4, 8, 16, 32}, and choose
whichever minimizes Γ(RCACHE).

Table III shows the ratio between Γ(RELA-2) and
Γ(RCACHE). We see that SPM is often significantly better
than cache, especially for larger k. This is because the SPM
transfers data in blocks of arbitrary size, matching the partition
size, whereas the cache transfers data in blocks of size c. Table
IV shows that the SPM solution is better if the bus setup cost
is increased. If the bus setup cost is very small, or if the SPM
block size is small as a result of small k, then cache can hold
the advantage, but SPM’s large block transfers are preferable
for large bus setup costs.

VII. CONCLUSION

Due to its predictability, SPM is an ideal technology for
storing program instructions and data within embedded real-



L(s) =
s+ 0 s+ 10 s+ 20 s+ 50 s+ 100

binarysearch 1.00 1.89 2.21 3.01 3.94
bsort100 1.03 1.79 2.09 2.81 3.64
crc 0.91 1.78 2.07 2.76 3.63
edn 0.65 1.01 1.19 1.62 2.13
fir 0.29 0.63 0.81 1.22 1.55
insertsort 1.03 1.68 1.95 2.59 3.30
jfdctint 0.75 1.15 1.33 1.74 2.18
matmult 0.85 2.12 2.75 3.85 4.90

TABLE IV
THE RATIO

Γ(RCACHE)

Γ(RELA-2)
FOR VARIOUS PROGRAMS AND L. k = 256.

time systems. However, adoption is limited due to the practical
difficulty that programs have to be modified in order to use
SPM effectively. In order to develop high-quality tools for
building programs for systems with SPM, we need high-
quality SPM allocation algorithms which behave consistently,
being free of anomalies or pseudorandom behavior that can
be triggered unexpectedly by changes in the input program.
Algorithms should be optimal, or close to optimal, for some
well-defined metric.

In this paper, we have developed algorithms to meet these
criteria, based upon Lukes’ k-partitioning algorithm [22].
ELA-1 and ELA-2 minimize the cost function defined in
equation 2, thus minimizing the time spent transferring data
from external memory to SPM during execution. ELA-1’s
optimal solutions are generated by partitioning a call tree
representation of the program. ELA-2’s optimal solutions
are generated by partitioning a restricted form of CFG. The
algorithms assume that a provided execution profile is typical.

We have shown that ELA-2 is a significant advance over
the previous two-step approach for allocating SPM space. We
have shown that the execution time of programs processed
using ELA-2 is similar to (or better than) the execution time
on a cache-based system. We have also shown that ELA-1 is
often close to ELA-2.

Future work. This paper has assumed that reload points
do not expand the program, but in reality, each reload point
will require some instructions to be added. Though the time
cost of executing a reload point is taken into account via
equation 3, the space cost is unaccounted for. Future work
should address this. It should also consider what optimizations
or approximations are possible to remove the 2|B| term from
the time complexity equation.
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