
Investigating Average Versus Worst-case Timing
Behavior of Data Caches and Data Scratchpads

Jack Whitham and Neil Audsley
Real-Time Systems Group

Department of Computer Science
University of York, York, YO10 5DD, UK

jack@cs.york.ac.uk

Abstract

This paper shows that a program using a time-
predictable memory system for data storage can achieve
a similar worst-case execution time (WCET) to the
average-case execution time (ACET) using a conventional
heuristic-based memory system including a data cache.
This result is useful within any embedded system where
time-predictability and performance are both important,
particularly hard real-time systems carrying out intensive
data processing activities. It is a counter-example to the
conventional wisdom that time-predictable means “slow”
in comparison to ACET-focused heuristics.

To carry out the investigation, 36 “memory access mod-
els” are derived from benchmark programs and assumed
to be representative of typical code. The models gener-
ate LOAD/STORE instructions to exercise a data cache or
scratchpad memory management unit (SMMU). The ACET
is determined for the data cache and the WCET is deter-
mined for the SMMU. After improvements are applied, re-
sults show that the SMMU WCET is within 5% of the data
cache ACET for 34 models. In 16 of 36 cases, the SMMU
WCET is better than the data cache ACET.

1 Introduction
Time-predictable computer architectures have been

proposed for the implementation of embedded hard real-
time systems [20]. Within such systems, the timeliness of
tasks is as important as functional correctness [4]: tasks
have deadlines. Conventionally, the worst-case execution
time (WCET) of each task is estimated in order to check
that deadlines will be met [27]. WCET estimates need to
be safe (≥ the true WCET) and tight (close to the true
WCET) [17]. Typical computer architectures aim to min-
imize the average execution time or energy consumption
of programs: time-predictable architectures facilitate the
determination of tight and safe WCET estimates [24].

This paper considers the combined execution time of
program instructions that access bytes or words of data,
known as LOAD and STORE, while ignoring all other in-
structions and instruction fetch. It shows that, for LOAD-
/STORE instructions, a WCET-friendly time-predictable
memory system can permit a similar WCET value to the

average-case execution time (ACET) value obtained us-
ing a conventional heuristic-based memory system such
as a data cache. It is known that there is often a signif-
icant discrepancy between the ACET and WCET using a
data cache [24]. Additionally, estimating the WCET of a
program using a data cache is a difficult problem because
of the cache state uncertainty created by data dependent
operation [9, 12]. The scratchpad memory management
unit (SMMU) used in this paper solves both of these prob-
lems together, (1) making WCET estimation straightfor-
ward [25] and (2) reducing the WCET to the approximate
level of the ACET achieved with an idealized data cache.

Like a cache, the SMMU enables the most frequently
accessed working set of a program to be stored in fast
memory [7], and also like a cache, it implements address
transparency: objects stored in external memory retain
their logical addresses as they are relocated to scratchpad
memory (SPM) and vice versa. This allows a fast and time-
predictable SPM to store the elements of any data struc-
ture, including those that are dynamically allocated, with-
out needing to account for pointer aliasing effects. How-
ever, unlike a cache, the WCET of each LOAD/STORE is
independent of previous memory accesses. This facilitates
WCET analysis by giving every LOAD/STORE a safe and
tight execution time bound, dependent only upon their lo-
cation in the program. The access latency for data in SPM
is the same as the hit latency for a data cache.

Earlier publications [24–26] have avoided direct com-
parisons with data caches due to the known difficulty of
estimating the WCET of a program using a data cache [9].
For a single-path program like the ones used for compari-
son in this paper, the SMMU WCET and ACET are equiv-
alent, but the cache WCET and ACET are very different,
as the WCET depends on the memory access pattern. The
cache ACET is easily determined by measurement, but it is
very difficult to determine the cache WCET, which is typ-
ically much greater than the ACET [25]. For this practical
reason, the cache ACET is used as a surrogate for compari-
son. If the SMMU WCET is close to the cache ACET, then
this is clear evidence for the benefit of the SMMU, despite
the anti-SMMU bias of the WCET/ACET comparison.

The first contribution of this paper is a detailed low
level study of the difference between the SMMU’s worst-

case behavior and an idealized data cache’s average-case
behavior. The second contribution is two improvements
that bring the SMMU WCET closer to the cache ACET for
many programs: the use of tiling to split accesses into large
objects into smaller sections, and explicit support for read-
only objects. Unlike previous work, this paper considers
minimal models of loop kernels which reproduce memory
access patterns while removing details that are not of inter-
est, such as arithmetic computations that have no effect on
the memory access pattern. The models are based on sam-
ples from SPEC 2000 [11] and Mibench [10] code. Like
earlier work on the SMMU, this paper considers only data
accesses, on the grounds that time-predictable instruction
memory is a relatively well-understood problem [14, 15].

The structure of the paper is as follows. Section 2 sum-
marizes relevant background information, and section 3
explains a method to obtain models of loop kernels from
benchmark code. Section 4 describes what happens when
these models are applied to two memory subsystems: an
SMMU and an idealized data cache. This motivates two
improvements to how the SMMU is used, and the imple-
mentation of these is described in section 5. Section 6 ex-
plores the effects of different hardware configurations and
section 7 concludes.

2 Time-predictable Data Memory
A time-predictable data memory subsystem is an essen-

tial part of any embedded system supporting hard real-time
tasks. 20-30% of the instructions executed by a typical
program access data in memory [26]. WCET analysis of
the program must take the WCETs of these instructions
into account: a time-predictable architecture attempts to
ensure that this is possible [1, 20]. Time-predictable ar-
chitecture research may focus on the instruction memory
subsystem [15], the CPU [13], or the data memory subsys-
tem [8, 21]. SMMU research is in the latter category [24].

Obtaining tight but safe WCET estimates for data mem-
ory accesses is difficult. The simplest technique of dis-
abling the data cache and accessing external memory is
often too slow by a factor of 30 or more [6]. Some re-
searchers have tried to account for the worst-case behav-
ior of conventional data caches so that they can be used
safely. Typically this is done by restricting the reference
string generated by the program: this is the sequence of
addresses used by LOAD and STORE operations [7]. If
the reference string is predictable, then the state of a data
cache is known, and hence the WCET of each LOAD/-
STORE may be calculated. The reference string may
be restricted by brute force, bypassing the cache for any
LOAD or STORE with an unpredictable address [9], such
as an access to a scalar variable in global or local mem-
ory, or an array access with an statically predictable index.
However, this technique doesn’t provide any benefit for
memory accesses that are data dependent in some way.

Cache-aware memory allocation (CAMA) also at-
tempts to restrict the reference string, but does not insist

that every part of it must be predictable [12]. Rather, the
WCET analysis problem is seen as an issue of determin-
ing where one element in cache may conflict with another.
One solution to this problem is to ensure that elements
never conflict, and CAMA carries out shape analysis to
determine which data structures may be used simultane-
ously to ensure that they are allocated to memory locations
that will not conflict [19]. This puts a bound on the total
number of cache misses during execution without requir-
ing the cache to be bypassed for any LOAD or STORE.

A third option is to bound the number of cache misses
within loops, using the relationships between the ad-
dresses used in each iteration [18]. This avoids the need
for whole-program shape analysis while providing a simi-
lar benefit within frequently-executed code.

However, the suitability of conventional data caches for
hard real-time systems is not universally accepted. Some
researchers advocate the use of novel cache designs tar-
geted at specific problems [20]. Others suggest the use of
SPM, often coupled with allocation algorithms that map
code [15] or local and global variables [8, 21] to SPM. All
these techniques have the advantage that on-chip memory
contents are dependent only on the position within the pro-
gram, not the reference string.

SPM techniques have difficulty with dynamic data
structures, whether allocated dynamically or not. This is
because the possibility of pointer aliasing makes it dif-
ficult to move objects into SPM as the physical address
must change. Aliases of a particular pointer may continue
to point to a stale copy of the object. To date, only two ap-
proaches have been proposed as solutions: the hardware-
based SMMU (section 2.1) and the software-based tech-
nique described in [22]. The software-only approach treats
the SPM contents as being local to particular regions of
the program, but instead of statically fixing the contents
in each region, dynamic memory allocation is permitted
to use the space [22]. Shape analysis is used to ensure
that a particular pointer is only used within regions where
it is valid. The technique has two disadvantages: firstly,
it is not time-predictable because objects are dynamically
spilled into slow external memory when space runs out,
and secondly, shape analysis must be applied to the entire
program, raising tractability issues for large programs.

2.1 SMMU and Scratchpad
The SMMU is a hardware device implementing ad-

dress transparency between the CPU and memory com-
ponents. It allows the logical address of an object to re-
main unchanged as the object is moved between external
memory and SPM. This retains the time-predictability of
SPM while also solving the pointer aliasing problem [24].
Aliases of a pointer never point to a stale copy of the ob-
ject because its logical address (as used by the program)
is never changed. Any SPM allocation algorithm could
be adapted to use the SMMU; the new benefit is time-
predictable support for dynamic data structures.

The core of the SMMU is a translation table containing

a list of “OPEN” objects. These are memory areas that
have been moved to SPM. Each entry in the table is ex-
pressed as a lower address bound bi, a size si, a valid bit
vi and an offset ti. When an object enters the working data
set, a program can move it into SPM using the SMMU’s
OPEN operation, which carries out a fast direct memory
access (DMA) copy and adds a new entry to the transla-
tion table, setting bi, si, vi and ti at the same time. While
the object is OPEN, any access within its address bounds
is rerouted to SPM. The physical address p is generated
from the logical address l by the translation table function
p = f(l), defined as:

f(l) =


l + ti − bi if ∃i, (bi ≤ l < bi + si) ∧

vi ∧ ∀j, (j ≤ i
∨ ¬[bj ≤ l < bj + sj])

l otherwise
(1)

After a program OPENs an object, single-cycle access to
it is absolutely guaranteed: the same access time as a data
cache hit. The CLOSE operation reverses OPEN, mov-
ing the object back into external memory and clearing the
valid bit vi. It is possible to OPEN more than one object
at once. If more than one address range matches a logi-
cal address, then a priority ordering implemented by the
table is applied to determine which area of SPM contains
valid data. As this ordering is also taken into account by
OPEN and CLOSE, overlapping objects are permitted, as
are arbitrarily interleaved OPEN and CLOSE operations.
Extensive tests have verified correct functional and timing
behavior in all circumstances [25].

Previous publications have studied the application of
the SMMU to a case study [24] and a group of bench-
mark programs [26]. These studies have revealed some of
the properties of the SMMU when used with typical pro-
grams, but relevant data is obfuscated by the complexity of
the benchmark code. To truly understand the timing prop-
erties of cache behavior and SMMU behavior, it is neces-
sary to look at the micro level: how the SMMU interacts
with small functions and loops.

3 Identifying Memory Access Models
This paper examines the interaction between a model

of a memory subsystem (e.g. an SMMU) and a model of
a benchmark program. These models retain all the func-
tional and timing properties that are considered important
while abstracting other details. In the case of a benchmark
program, the important detail is the memory access pat-
tern: the reference string of the most commonly executed
parts of the code. A model reproduces this pattern by issu-
ing LOAD and STORE operations. In the case of a mem-
ory subsystem, a model implements LOAD and STORE
and any other relevant operations, e.g. OPEN and CLOSE.
It replicates the timing behavior of these operations when
they are provided with a particular reference string. This
approach provides micro-level information about the inter-
actions between the memory and the program.

Instruction x = A[i]; (LOAD)
base pointer A, maximum size 1000,
access pattern: sequential address, with k = 1.
Instruction y = B[x]; (LOAD)
base pointer B, maximum size 256,
access pattern: random address.
Instruction A[0] = y; (STORE)
base pointer A, maximum size 1,
access pattern: constant address.

Figure 1: Memory references within Figure 1.

3.1 Capturing Patterns
A memory access pattern is only of interest if it is fre-

quently executed, i.e. generated by code within a loop. The
following process aims to create a model of frequently-
executed loop kernels within benchmark code. Loop ker-
nels commonly form the basis for other studies of memory
and code optimization [2, 28]: in this paper, all operations
other than LOAD/STORE are abstracted away. As all con-
trol flow is removed and the number of iterations is con-
stant, each kernel is effectively a single-path program [16].

To identify suitable loop kernels, each benchmark pro-
gram is split into regions. These are partitions of the con-
trol flow graph (CFG) of each program. Each basic block
belongs to exactly one region. Region boundaries are in-
troduced at the entrances and exits of every loop and be-
fore each basic block where a pointer is created [26].

As each benchmark program is executed in an instruc-
tion set simulator [3], counters track the total number of
memory accesses initiated by a single LOAD or STORE
operation within each region, ignoring instruction fetches
and accesses to the local stack. (Each LOAD/STORE in-
struction may transfer between 1 and 8 bytes.) Once the
program completes, or after one billion instructions have
been executed, the regions are sorted into descending order
of access count. This reveals suitable loop kernels within
the program: the regions that account for the highest pro-
portion of memory accesses. The list is truncated to in-
clude only those making up the top 95% of memory ac-
cesses performed by the benchmark.

The choices of constants (“one billion” and “95%”)
are arbitrary and have been made in order to ensure that
this work is tractable. Otherwise the investigation would
be open-ended. More programs could be studied over a
longer time period, while considering a larger proportion
of loop kernels, but since the 36 loop kernels already ex-
hibit a wide range of different behaviors, it is not unrea-
sonable to say that most common cases are covered here.

The process of capturing a memory access pattern is il-
lustrated by example as follows – the short program shown
in Listing 1 contains several regions, but the only one of
interest is the loop body, which carries out three memory
references for each loop iteration. These access two dif-
ferent objects in memory, A and B. (References to local
variables x, y and i are ignored during analysis; these will
be stored either in registers or the local stack.)

Next, a report is produced for each region in the list

Listing 1: Example of a loop kernel within a function (“main”).
unsigned char A[1 0 0 0] ;
unsigned char B [2 5 6] ;
i n t main (void)
{

i n t x , y , i ;
f o r (i = 0 ; i < 1000 ; i ++) {

x = A[i] ;
y = B[x] ;
i f (i ==100) A[0] = y ;

}
re turn y ;

}

Listing 2: Model of Listing 1.
A = NEW() ;
B = NEW() ;
f o r (i = 0 ; i < N; i ++) {

LOAD(A + i) ;
LOAD(B + RANDOM(2 5 6)) ;
STORE(A) ;

}

(e.g. Figure 1). The report gives information about the
reference string Xr = [r0, r1, ..., rn] generated by each
LOAD or STORE instruction X within that region. Each
X is statically associated with a particular base pointer
Xb representing a variable used in the source code, e.g. A
or B. Each X also has a maximum size Xs and an access
pattern Xp. At this point, conditions such as if(i==100)
are removed, so that all accesses are assumed to take place
on each iteration. The effect of this removal is to make the
models pessimistic, tending to overestimate the number of
memory accesses. Note that this is exactly how a single-
path CPU would operate [16].

Xb, Xs and Xp are identified automatically from the
machine code and reference string of the program. The
following access patterns are recognized as distinct:

Constant Address. Each execution of X accesses the
same location Xb+l, i.e. Xr = [Xb+l,Xb+l,Xb+l, ...].
This is typical of a repeated reference to a global variable.

Dynamic Address. There is exactly one execution of
X for each time the base pointer is generated, i.e. Xr =
[Xb + l]. This is typical of iteration through a linked list or
traversal through a tree.

Sequential Address. Each execution of X advances the
effective address by a constant step Xk, i.e. Xr = [Xb +
l,Xb + l + Xk, Xb + l + 2Xk, Xb + l + 3Xk, ...]. This is
typical of iteration through a buffer or array.

Random Address. Each execution of X is at an unpre-
dictable location within the referenced object, somewhere
between Xb and Xb+Xs. This is typical of random access
to a dictionary or lookup table.

The three accesses performed by Listing 1 are sequen-
tial, random, and constant. The first iterates through A with
constant step 1. The second accesses an element B[x]
where x = A[i]: this is effectively random, since the
contents of A are unknown. The third writes to A[0] and
its condition is ignored.

Listing 3: The main part of the susan smoothing function is a
loop kernel accessing three objects.
f o r (x=−m a s k s i z e ; x<=m a s k s i z e ; x ++) {

b r i g h t n e s s = ∗ i p ++;
tmp = ∗d p t ++ ∗ ∗(cp−b r i g h t n e s s) ;
a r e a += tmp ;
t o t a l += tmp ∗ b r i g h t n e s s ;

}

Listing 4: Model of susan smoothing.
cp = NEW() ;
i p = NEW() ;
d p t = NEW() ;
f o r (i = 0 ; i < N; i ++) {

LOAD(cp + RANDOM(2 8 6)) ;
LOAD(i p + i) ;
LOAD(d p t + i) ;

}

The identified patterns are replicated within the model
as follows. For each region, a for loop is constructed with
a fixed, large number of iterations. Inside the loop, a model
“memory access” is placed as a surrogate for each X , ex-
pressed as a LOAD or STORE operation for the address to
be accessed on iteration i as follows:

Constant Address: LOAD(Xb + l)
Dynamic Address: LOAD(Xb + l), then Xb = NEW()
Sequential Address: LOAD(Xb + l + Xki)
Random Address: LOAD(Xb+ RANDOM(Xs))
Each base pointer Xb is generated before the for loop

by the command Xb = NEW(), which can also be used
to generate new base pointers within the loop to represent
dynamic accesses, such as linked list iterations. NEW()
generates a random location anywhere within the model
memory space. RANDOM(n) generates a random num-
ber between 0 and n− 1. The model for the example pro-
gram is shown in Listing 2. It is expected that a model
of a memory subsystem defines LOAD and STORE, while
NEW and RANDOM are defined by library code.

3.2 Benchmarks
The model-generating process was applied to some of

the C language programs in the SPEC 2000 [11] and
Mibench [10] benchmark suites. The result is a corpus
of model procedures similar to Listing 2. Each model is
a single-path program that only accesses memory, and as-
sumes that conditional accesses are always executed. The
set of benchmark programs could be expanded to widen
the search for possible memory access patterns, but it
is important to keep this investigation within reasonable
bounds, so the chosen set is assumed to be representative.

Table 1 summarizes the contents of the regions consid-
ered, using a code to represent the pattern generated by
each model. As an example of this code, Listing 3 shows
part of the “susan smoothing” function, from the susan
benchmark [10]. This is model number 32 and contains
“1R[286] 1S+1 1S+1”. This means there are three dis-

Nr Program Function Contents
1 bitcount ntbl bitc... 8R[16]
2 gsm ulaw input 4C* 1C 1C
3 djpeg jpeg idct... 16R[134] 9R[160]
4 rijndael encrypt 224R[4.0k]
5 bitcount ntbl bitcnt 1R[16]
6 djpeg jpeg idct... 16C* 9R[1.4k]
7 bitcount AR btbl b... 4R[256]
8 gsm Calculati... 40R[4.0k]
9 CRC32 crc32file 1C 4C* 1R[1.5k]

10 art train match 5C 1C 1C 1C 1C 1C
1R[1.0M] 1R[1.0M]
1S+8

11 art train match 8C 1C 5C 1C 1C
1R[1.0M] 5S+64*

12 bzip2 fullGtU 13C 6D 6D
13 bzip2 qSort3 2C 1C 1C 1R[683.6k]

1S+1
14 ammp a number 2C* 3D
15 ammp a m serial 5C* 3D
16 patricia main 10D
17 art train match 5C 5C 5S+64*
18 ispell ichartostr 2R[20.5k]*
19 bzip2 generateM... 8C 1C 1C 1C 1R[683.6k]

1R[263] 2R[1.0k]* 1S+1
1S+1*

20 art train match 11C 7C 2C 1C 1C
7S+64*

21 art train match 5C 1C 1C 2C 1C 1R[88]
1S+8 1S+64 2S+1*

22 bzip2 getRLEpair 13C* 1S-1
23 bzip2 spec getc 12C* 1S+1
24 mesa clear 1C 1S+4*
25 ispell linit 2C 1C 6S+24*
26 bitcount main 1S+8
27 fft fft float 4S+8* 2S+8 3S+8*

3S+8*
28 adpcm adpcm coder 2R[404] 1S+1* 1S+2
29 djpeg ycc rgb c... 2R[1020] 1R[1020]

1R[1020] 3R[1.4k] 3S+1
3S+3*

30 bzip2 fullGtU 16C 16C 4S+1 4S+1
4S+1 4S+1

31 gsm Short ter... 2S+2*
32 susan susan smo... 1R[286] 1S+1 1S+1
33 ispell good 1R[88] 1S+1 1S+1
34 djpeg h2v2 fanc... 2S+1 2S+2*
35 gap ProdInt 4S+2 8S+2*
36 gsm Weighting... 9S+2

Table 1: Summary of the memory access models generated from
the benchmark programs. Each loop kernel is represented by
a single table row containing one identifier for each base pointer
Xb used within it. The identifiers are all of the form nTp, where n
is the number of accesses to that base pointer, T is the access pat-
tern Xp (Constant, Sequential, Dynamic, or Random address),
and p is the property of that access, if any. For a sequential ac-
cess type, p is the step from one access to another (i.e. Xk) and
for a random access type, p is the maximum object size (i.e. Xs).
Identifiers are followed by * when STOREs are performed.

tinct base pointers, which are accessed (1) randomly, (2)
sequentially, with step 1, and (3) sequentially, again with
step 1. The base pointer that is accessed randomly is cp,
and the size of the accessible memory space is 286 bytes.
ip and dpt are both accessed sequentially. The model for
this region is shown in Listing 4. All calculations are lost,
leaving a model of the memory access pattern.

During examination of the benchmarks, it was found
that some loop kernels are actually within library code,
particularly formatted output functions such as printf.
These are omitted (1) because producing output is not the
main focus of each benchmark, and (2) different imple-
mentations of printf are possible, and some may be bet-
ter suited to embedded hard real-time systems than others.
Including them would bias the results in a way that de-
pends entirely on the printf implementation, which is
not relevant to the investigation.

Other commonly used library functions are related to
copying and zeroing memory, e.g. memcpy and memset.
These are also omitted from consideration because a cache
or SMMU-based system should use customized versions
of memset and memcpy to match the hardware.

4 Memory Subsystems
In Table 1, many memory access models use more than

one base pointer. Unless those base pointers are specifi-
cally chosen to avoid cache conflicts [12], it will be very
difficult to determine the WCET of the model when used
with a data cache. This is particularly true for the models
that use random or dynamic addresses, since there is no
consistent access pattern between iterations. Intuitively,
one would expect a large discrepancy between the true
WCET for a cache and the ACET for a cache [25].

The SMMU exhibits worst-case behavior unless objects
overlap in memory, which permits a minor improvement in
ACET unless each LOAD/STORE operations is required
to have a fixed execution time. Intuitively, one would ex-
pect the SMMU’s WCET to be larger (i.e. worse) than the
ACET obtained using a cache, because not all objects can
be OPENed by the SMMU [26].

4.1 Replacing Intuition with Data
Using the memory access pattern models, the above in-

tuitions can be replaced with quantitative data [23]. Fig-
ure 2 shows a comparison of the WCET of each model
obtained using an SMMU, and the measured ACET of
each model obtained using a data cache. This includes
only memory operations, not control flow or calculations.
The memory subsystems tested are (1) a 16kbyte fully-
associative write-back data cache with 64 byte cache lines
and LRU replacement policy, and (2) a 16kbyte SPM com-
bined with a 16 entry SMMU. Objects are packed into
SPM space in descending order of access count.

The data cache is idealized, with no time penalty for
fully-associative cache lookup. If a more realistic set-
associative data cache were used, then cache results would

0th percentile

25th percentile

50th percentile

75th percentile

90th percentile

100th percentile

Mean

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Option (b)
Option (c)

SMMU WCET / Cache ACET

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.85
0.90
0.90

0.71
0.71

1.00
0.93
0.94

0.80
0.89

0.53
0.95

1.00
0.93
0.94

0.55
1.00

1.18
0.54

1.00
0.58

0.63
0.65

1.22
0.67

1.07
1.16

0.99
0.99
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET / SMMU WCET with Tiling

M
o

d
e

l N
u

m
b

e
r

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.02
0.03
0.05
0.05
0.05
0.06
0.06
0.07
0.08

0.11
0.18
0.19
0.20

0.23
0.24

0.42
0.42

0.50
0.54
0.55

0.58
0.63
0.65
0.67
0.67
0.67

0.92
0.99
0.99
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET / SMMU WCET

M
o

d
e

l N
u

m
b

e
r

36

33

30

27

24

21

18

15

12

9

6

3

0.0 5.0 10.0 15.0 20.0 25.0 30.0

1.22
1.50

2.25
1.67
1.67

3.00
1.08
1.55
2.00

5.67
9.00

6.33
5.00

1.08
1.07

5.93
5.41

4.87
27.18

9.53
7.30

8.88
13.61

11.59
6.04

9.68
11.34

1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET relative to Perfect Data Cache

M
o

d
e

l N
u

m
b

e
r

512
1024

2048
4096

8192
16384

32768
65536

131072

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

10th
mean
90th

On-chip memory size (bytes)

C
a

ch
e

 A
C

E
T

 /
S

M
M

U
 W

C
E

T

Figure 2: Bar graph illustrating cache ACET divided by SMMU
WCET for each model. Values less than 1.0 indicate that the
SMMU’s WCET is greater than the cache ACET, and thus the
SMMU’s worst-case performance is poorer than the cache case.

be poorer, as conflicts could occur between different cache
sets. Furthermore, the single-path assumption also im-
proves the cache results, as there is no need to consider the
cache state uncertainty introduced by multiple execution
paths. In this experiment, uncertainty only comes from
the address sequence. To deal with that, the cache ACET is
gathered over 1000 model executions. These problems do
not apply to the SMMU, for which it is possible to capture
the WCET (and ACET) of a model by one measurement.

The size of the loop bound for each model is 20,000
iterations; this figure is chosen to ensure that sequentially-
accessed objects cannot fit entirely within cache or SPM,
as this would distort the results in favor of models using
small constant steps. Both subsystems begin in an empty
state, and are flushed after each model has completed: this
time counts towards the WCET.

Some of the models make better use of data cache than
others, as Figure 3 illustrates. Where the ACET of a
LOAD/STORE is near to 1.0, practically all accesses are
cache hits. However, this only occurs in a few cases. The
cache is not always the best solution, even for ACET.

During the experiments, it is assumed that only mem-
ory access operations affect the ACET and WCET. On-
chip memory accesses cost 1 time unit per 4-byte word.
External memory access times for s bytes are defined by:

T (s) = 50d s

64
e+ bs mod 64

4
c (2)

0th percentile

25th percentile

50th percentile

75th percentile

90th percentile

100th percentile

Mean

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Option (b)
Option (c)

SMMU WCET / Cache ACET

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.85
0.90
0.90

0.71
0.71

1.00
0.93
0.94

0.80
0.89

0.53
0.95

1.00
0.93
0.94

0.55
1.00

1.18
0.54

1.00
0.58

0.63
0.65

1.22
0.67

1.07
1.16

0.99
0.99
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET / SMMU WCET with Tiling

M
o

d
e

l N
u

m
b

e
r

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.02
0.03
0.05
0.05
0.05
0.06
0.06
0.07
0.08

0.11
0.18
0.19
0.20

0.23
0.24

0.42
0.42

0.50
0.54
0.55

0.58
0.63
0.65
0.67
0.67
0.67

0.92
0.99
0.99
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET / SMMU WCET

M
o

d
e

l N
u

m
b

e
r

36

33

30

27

24

21

18

15

12

9

6

3

0.0 5.0 10.0 15.0 20.0 25.0 30.0

1.22
1.50

2.25
1.67
1.67

3.00
1.08
1.55
2.00

5.67
9.00

6.33
5.00

1.08
1.07

5.93
5.41

4.87
27.18

9.53
7.30

8.88
13.61

11.59
6.04

9.68
11.34

1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET relative to Perfect Data Cache

M
o

d
e

l N
u

m
b

e
r

512
1024

2048
4096

8192
16384

32768
65536

131072

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

10th
mean
90th

On-chip memory size (bytes)

C
a

ch
e

 A
C

E
T

 /
S

M
M

U
 W

C
E

T

Figure 3: Mean execution time of a LOAD or STORE operation
within each model, in relation to the execution time with a perfect
data cache: a memory that always responds to LOAD/STORE
in one time unit. The scale reflects the access time to external
memory as defined by equation 2.

This equation is based on the cost of accessing memory on
typical embedded systems [25], where one time unit is one
CPU clock cycle. Bus transactions to external memory
have a setup cost of 50 time units and a maximum size
of 64 bytes. Up to four bytes are transferred during each
time unit. Section 6 examines the effect of adjusting the
constants in this equation (50, 64 and 4).

4.2 Confirming Intuitions
The data presented in Figure 2 shows that the SMMU

comes very close to the ACET obtained with the cache in
some cases, particularly models 1-9. These models use
only constant-address and random-address accesses with
small objects. They map very efficiently to both cache and
SMMU because the entire working data set used by the
model fits in on-chip memory.

The remainder of the models do not map so well to
the SMMU. This is because the working data set is much
larger than the on-chip memory. In most cases the cache
handles this well because its contents change during exe-
cution of the model. In 22 models, the problem is caused
by one or more sequential accesses. The very worst ex-
amples, e.g. models 26-36, use sequential accesses almost
exclusively. The SMMU handles these very badly, and
where performance appears to improve (e.g. between 26
and 36), it is mainly because of differences in the cache
ACET. Due to the experimental design, the sequentially
objects are always too large to be loaded on-chip, so ac-
cesses are redirected to external memory. (In reality, se-
quentially accessed objects sometimes do fit entirely on-
chip, so this is further bias against the SMMU.)

However, for a sequential access, there is no need to
load the entire object into SPM. Instead, a small “win-
dow” can be OPENed, loading successive small sections
(tiles) as the sequence progresses. This is possible and
time-predictable because the reference string of accesses

0th percentile

25th percentile

50th percentile

75th percentile

90th percentile

100th percentile

Mean

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Option (b)
Option (c)

SMMU WCET / Cache ACET

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.85
0.90
0.90

0.71
0.71

1.00
0.93
0.94

0.80
0.89

0.53
0.95

1.00
0.93
0.94

0.55
1.00

1.18
0.54

1.00
0.58

0.63
0.65

1.22
0.67

1.07
1.16

0.99
0.99
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET / SMMU WCET with Tiling

M
o

d
e

l N
u

m
b

e
r

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.02
0.03
0.05
0.05
0.05
0.06
0.06
0.07
0.08

0.11
0.18
0.19
0.20

0.23
0.24

0.42
0.42

0.50
0.54
0.55

0.58
0.63
0.65
0.67
0.67
0.67

0.92
0.99
0.99
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET / SMMU WCET

M
o

d
e

l N
u

m
b

e
r

36

33

30

27

24

21

18

15

12

9

6

3

0.0 5.0 10.0 15.0 20.0 25.0 30.0

1.22
1.50

2.25
1.67
1.67

3.00
1.08
1.55
2.00

5.67
9.00

6.33
5.00

1.08
1.07

5.93
5.41

4.87
27.18

9.53
7.30

8.88
13.61

11.59
6.04

9.68
11.34

1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET relative to Perfect Data Cache

M
o

d
e

l N
u

m
b

e
r

512
1024

2048
4096

8192
16384

32768
65536

131072

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

10th
mean
90th

On-chip memory size (bytes)

C
a

ch
e

 A
C

E
T

 /
S

M
M

U
 W

C
E

T

Figure 4: Bar graph illustrating cache ACET divided by SMMU
WCET for each model when tiling is used. The SMMU WCET
of 22 models has decreased by 5% or more versus Figure 2.

to that object is known to be a linear sequence.
Figure 4 shows the effect of loading each sequentially-

accessed object in tile form. The memory subsystems are
the same as in Figure 2, but each sequentially-accessed
object is now loaded in 1kb tiles during iteration, ensuring
that SPM space is always available. The effect is dramatic.
17 models now have an SMMU WCET within 5% of the
cache ACET, and the WCET of 22 models has decreased
by 5% or more versus Figure 2. Four models now have
an SMMU WCET that is less than the cache ACET, ap-
pearing as data points > 1.0 in Figure 4. This happens
because dynamic accesses and random accesses to large
objects do not interact well with a cache. In general, cache
line loads are beneficial only if the line contents are go-
ing to be reused. As the contents are not normally reused
(there is no locality), it is much better to access external
memory directly in these cases, and this is exactly what
happens with the SPM and SMMU, which load the min-
imum amount of data required and no more. The cache
assumes that there is locality, and therefore it is always
worth loading an entire line of data. While this assumption
is often effective, it increases the cache ACET relative to
the SMMU WCET in some cases.

4.3 Closing the SMMU/Cache Gap
Even with tiling, the SMMU WCET is still often

greater than the cache ACET. The issue is not related to
large objects, as it affects models which use only dynamic

data structures, e.g. model 16. These are processed more
efficiently by the cache, which appears counter-intuitive
because (1) the data structure elements are placed in effec-
tively random memory locations, and (2) the sizes of the
elements do not need to be rounded up to the nearest cache
line size when the SMMU is used.

The problem here is the SMMU’s CLOSE operation,
which always writes back to external memory even if the
data in SPM has not been updated. A “write-back” cache
like the one simulated for Figures 2 and 4 skips this step
unless it is absolutely necessary because a STORE opera-
tion has written to the cached data. If OPEN and CLOSE
are redesigned to allow objects to be OPENed in a read-
only mode without a write-back step during CLOSE, then
the gap between cache performance and SMMU perfor-
mance is narrowed. This is illustrated by Figure 5, where
the SMMU’s translation table is modified to support up
to three read-only entries, which can be explicitly se-
lected using a read-only flag given to the OPEN operation
(which becomes OPEN RO). When CLOSEd, the con-
tents of these objects are discarded, not written back. The
reason for limiting the number of read-only entries to three
is explained in section 5.2.

However, Figure 5 shows yet another dramatic im-
provement in the Cache ACET / SMMU WCET ratio. The
WCETs obtained using the SMMU are now within 5% of
the cache ACET in 34 cases, and the WCET of 18 mod-
els has improved by more than 5% relative to Figure 4.
Clearly, OPEN RO provides a worthwhile improvement.

4.4 Random Accesses
Figures 4 and 5 illustrate that the remaining difficulty

is random accesses to large objects. Random accesses to
small objects are not a problem, because they can be han-
dled by loading the entire object into SPM. However, mod-
els 18, 21, 28, 29, 32 and 33 all access objects that are too
large to fit in SPM, and while the SPM can be made larger,
its size is limited by hardware considerations such as clock
frequency, silicon area and energy consumption. As long
as the external memory has a higher capacity than on-chip
memory, it will always be possible to access a working
data set that is simply too large to fit on-chip. An SMMU
and SPM are no help at all with objects of this size, and a
cache is also unhelpful if the WCET is of interest, as the
entire working data set cannot fit in cache and each access
could use an address that is not already loaded. This is re-
flected in Figure 3: these models have poor performance
with both cache and SMMU.

Model 18 is an unusual case. Here, the cache is sig-
nificantly better than the SMMU. The only object used by
this model is only slightly larger than the cache size: this
is why the cache is relatively successful in comparison to
the SMMU. The cache will probably contain a requested
element in the average case. However, in order to be time-
predictable, the SMMU must contain either all of or none
of a randomly accessed object.

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

1
.0

5

1
.1

0

1
.1

5

1
.2

0

1
.2

5

1
.3

0

1
.3

5

1
.4

0

1
.4

5

1
.5

0

1
.5

5

1
.6

0

1
.6

5

1
.7

0

1
.7

5

1
.8

0

1
.8

5

0

5

10

15

20

25

30

SMMU WCET / Cache ACET

F
re

q
u

e
n

cy

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

1.00
1.00
1.00
1.00
1.00
1.00

0.98
0.99
1.00
1.00
1.00

0.95
1.00
1.00
1.00
1.00
1.00

1.20
0.54

1.00
1.07

1.18
1.24
1.24

1.21
1.07

1.24
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Cache ACET / SMMU WCET with OPEN_RO

M
o

d
e

l N
u

m
b

e
r

Figure 5: Bar graph illustrating cache ACET divided by SMMU
WCET for each model when OPEN RO is used for read-only
objects. The WCET of 18 models has improved by more than
5% versus Figure 4.

5 Improving the SMMU
Results presented in section 4 indicate that most of the

discrepancy between the SMMU and cache can be mit-
igated by (1) tiling and (2) using OPEN RO whenever
possible. Together, these improvements actually make the
SMMU better than the cache for a significant number of
models. The exceptions are models involving random ac-
cesses to large objects, which are not executed efficiently
in any case. The challenge is to implement the features
without losing time-predictability.

5.1 Implementing Tiling
Loop tiling is a form of loop transformation. It aims

to improve code performance by increasing data local-
ity [28]. A number of transformations, including loop
scaling, skewing, interchange and reversal may be ap-
plied as part of the process within modern compilers such
as GCC [2]. These transformations are a benefit to data
caches because they ensure that accesses to memory are
sequential where possible.

A new set of loop transformations are not required to
make good use of the SMMU. As Figure 4 illustrates, code
that works well with a cache works well with the SMMU.
All that is needed is a mechanism to split sequential mem-
ory accesses performed by a loop into tiles that will fit
within the SPM. It is only necessary to trigger a move to
the next tile when the end of the current tile is reached.

Listing 5: Implementation of tiling for susan smoothing’s ac-
cesses to the “ip” object.
t i l e s i z e = 1024 ;
t i l e s t e p = 1 ;
i p h a n d l e = OPEN(ip , t i l e s i z e , 0) ;
f o r (x=−mask s i ze , i =0 ;

x<=m a s k s i z e ; x ++ , i += t i l e s t e p) {
i f (i >= t i l e s i z e) {

CLOSE(i p h a n d l e) ;
i p h a n d l e = OPEN(ip , t i l e s i z e , 0) ;
i = 0 ;

}
b r i g h t n e s s = ∗ i p ++;
tmp = ∗d p t ++ ∗ ∗(cp−b r i g h t n e s s) ;
a r e a += tmp ;
t o t a l += tmp ∗ b r i g h t n e s s ;

}
CLOSE(i p h a n d l e) ;

This can be done using nested “for” loops or a rarely-
executed conditional statement within the inner loop, with
a number of executions bounded as a function of the sur-
rounding loop bound.

Listing 5 shows a trivial implementation for one of the
sequential accesses carried out within susan smoothing

(Listing 3). The relevant code could be automatically in-
serted by a compiler upon identification of a sequential
access, after loop transformations have been applied. Im-
plementation of this compiler feature is future work.

5.2 Implementing Read-only OPEN
OPEN RO, a read-only OPEN operation, is required to

match cache performance in many cases (Figure 5). Like
any other SMMU operation, this must be time-predictable.
Implementing OPEN RO is subtly non-trivial. To illus-
trate the difficulty, suppose that (1) an object Z is OPENed
using OPEN RO, but (2) a pointer alias a = Z references
it and (3) alias a is used to update Z. As in the general
form of the pointer aliasing problem, the compiler does not
know the relationship between a and Z and cannot guar-
antee either a = Z or a 6= Z [5]. It is important that situa-
tions similar to this are handled so that program semantics
are preserved and time-predictability is retained.

The simplest correct design for an SMMU augments
the existing design [24,25] with nr translation table entries
defined as read-only. These must be the lowest priority
entries in the table according to equation 1. It is possible
to assign entries as read-only or read-write at run-time, but
this is significantly more complex as the priority encoder
must give all read-write entries at higher priority.

If a STORE operation matches with one or more read-
only entries, and no read-write entries at all, then the data
is written directly to external memory and every matching
read-only entry listed in the table. This ensures that no
read-only entry contains stale data. When a read-only en-
try is CLOSEd, there is no write to external memory, and
therefore no subsequent opportunity to bring the read-only
entries up to date. If there are nr read-only entries, then
nr SPM writes will be required in the worst case for each
STORE. Provided that nr is small, the cost of these writes

is entirely hidden by the cost of the external memory up-
date, since T (1) > nr.

However, CLOSE operations must also write to SPM,
in cases where overlapping memory areas are OPEN and
the object being CLOSEd is read-write. Consider a con-
figuration where a memory area of size s bytes has been
OPENed nr + 1 times: nr times in read-only mode, and
once in read-write mode. The area is then updated by a
STORE; this is serviced by a single write to SPM within
the read-write copy of the object. Then the read-write table
entry is CLOSEd. In order to preserve program semantics,
every read-only entry must be updated for every byte in the
read-write entry, because no further CLOSE operation will
carry out a write back operation. This means snr writes to
SPM in addition to s writes to external memory.

The time cost of the external memory writes is T (s)
(equation 2). The time cost of snr SPM writes is d snr

4 e
if one 4-byte word can be written on each clock cycle. It
is possible that the external memory access time will be
less than the internal update time for the SPM, because
contiguous writes to external memory are handled as burst
transactions: 1 high latency write may be faster than nr

low-latency writes. The cost of the external memory up-
date only subsumes the cost of the SPM update when in-
equality 3 is satisfied:

T (s) ≤ dsnr

4
e (3)

Using the definition of T (s) from equation 2, inequality 3
is not satisfied for all s > 0 unless nr ≤ 3. Therefore the
maximum number of read-only objects that can be reliably
updated during a read-write CLOSE operation is 3. This
is why 3 was chosen as the limit for the experiment used
to generate Figure 5.

Alternative ways of solving this problem do exist. T (s)
could be increased, e.g. by reducing the maximum burst
size, but this would also increase every WCET. Or the time
cost of the read-write CLOSE operation, currently T (s),
could be redefined as max(T (s), d snr

4 e). Finally, whole-
program shape analysis could be used to detect the places
where read-only objects may overlap read-write objects
or be updated by aliased pointers. But these alternatives
are quite poor. Increasing the WCET for all operations or
introducing shape analysis breaks the design goals of the
SMMU [24]. Redefining the cost of CLOSE operations
seems acceptable because read-only objects appear to be
much more common than read-write objects (90 versus 24
within the models considered) but in fact the additional
CLOSE cost becomes extremely significant as nr is in-
creased beyond 3. The SMMU WCET of nearly half of
the models increases substantially.

Therefore, restricting nr to a value satisfying inequal-
ity 3 for all s > 0 appears to be the best possibility, par-
ticularly as SMMU allocation algorithms can use OPEN
in place of OPEN RO without changing program seman-
tics. The change described above has been implemented
in hardware and validated by the same test process used

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 512 1024 2048 4096 8192 16384 32768 65536 131072

C
a

c
h

e
 A

C
E

T
 /

 S
M

M
U

 W
C

E
T

On-chip memory size (bytes)

80% confidence interval
Mean value

Figure 6: Effect of changing the amount of on-chip memory on
Cache ACET / SMMU WCET. The chart shows the mean value
and 80% confidence interval for all models (calculated using the
10th and 90th percentiles).

to check the original SMMU design [25]. The result is
slightly increased hardware usage.

6 Exploring the Parameter Space
Various system-specific parameters are chosen in sec-

tion 4. These include the size of the on-chip memory, se-
lected as 16 kbytes (cache or SPM), and the transaction
setup time of 50 time units (equation 2). Although both
of these choices are based on real embedded systems [25],
it is worth considering the dependence of the results pre-
sented (e.g. Figure 5) on these particular values.

The on-chip memory size affects the results as shown
in Figure 6. This graph is drawn using the assumption that
(1) all items in Table 1 are equally important members of
a population of all significant loop kernels, and (2) that all
other parameters are as specified in section 4. The Cache
ACET / SMMU WCET value were determined for each
model as for Figure 5, and used to compute the mean value
and 80% confidence interval.

As the results show, the SMMU is typically better than
cache with small memory sizes because it can store small
objects efficiently, without consuming an entire cache line.
It retains some advantage over cache as the amount of
space is increased. As the on-chip memory size becomes
very large, the cache and SMMU results converge towards
the same value.

The bus setup latency has very little effect on the re-
sults. Keeping all other parameters as specified in section
4, Cache ACET / SMMU WCET was evaluated for each
model with bus latencies of 25, 50 and 100. The mean,
median and standard deviation of the results for each bus
setup latency turned out to be within 4% of each other.

7 Conclusion
This paper has described a low-level study of the

SMMU based on single-path models of memory access

patterns extracted from benchmark programs. It has com-
pared the SMMU to a fully-associative data cache of
the same size by executing the models using a cache
and SMMU, determining ACET and WCET. The SMMU
WCET and ACET are equal as the models are single-path.

It has shown that the SMMU’s WCET can be very close
to a cache’s ACET in almost all of the cases examined.
Figure 5 shows an SMMU/cache comparison with an on-
chip memory size of 16kb in which the SMMU’s WCET
is lower than the cache ACET in 16 cases, and in 34 cases,
the SMMU’s WCET is less than or equal to the cache
ACET plus 5%. Figure 6 indicates that this result is typ-
ical of other on-chip memory sizes. Poor results are only
obtained for models that make poor use of a cache, e.g. 18.

Unlike a data cache, an SMMU is fully time-
predictable, giving a tight execution time bound for each
LOAD or STORE, even those using data-dependent ad-
dresses and accessing dynamic data structures. The results
show that time-predictable systems do not need to be sig-
nificantly slower - on average and in the worst case - than
those using heuristic mechanisms such as caches.

Future work will involve adding SMMU loop tiling
support to a compiler as per section 5.1 and exploring al-
ternative SMMU designs that improve WCET and ACET
further.

Acknowledgments
This work was supported by the EU ICT project

eMuCo, no. 216378, and the EPSRC project TEMPO,
no. EP/G055548/1. The authors would like to thank the
ECRTS reviewers, Rob Davis and Alan Burns for their
comments and advice on this paper.

References
[1] S. Bandyopadhyay, F. Huining, H. Patel, and E. Lee. A

scratchpad memory allocation scheme for dataflow mod-
els. Technical Report UCB/EECS-2008-104, EECS Depart-
ment, UCB, Aug 2008.

[2] D. Berlin, D. Edelsohn, and S. Pop. High-level loop opti-
mizations for gcc. In Proc. GCC Developers Summit, pages
37–54, 2004.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling
Networked Systems. IEEE Micro, 26(4):52–60, 2006.

[4] A. Burns and A. J. Wellings. Real-Time Systems and Pro-
gramming Languages. Addison Wesley, 2001.

[5] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. In Proc. PLDI, pages 296–310,
1990.

[6] Christian Ferdinand and Kai Richter. Tutorial on Timing
Analysis and Optimization. http://www.embedded.
dk/download/Tutorial_EW08_AbsInt.pdf.

[7] P. J. Denning. Virtual memory. ACM Comput. Surv.,
2(3):153–189, 1970.

[8] J.-F. Deverge and I. Puaut. WCET-Directed Dynamic
Scratchpad Memory Allocation of Data. In Proc. ECRTS,
pages 179–190, 2007.

[9] C. Ferdinand and R. Wilhelm. On predicting data cache
behavior for real-time systems. In Proc. LCTES, pages 16–
30, 1998.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commer-
cially representative embedded benchmark suite. In Proc.
IISWC, 2001.

[11] J. Henning. SPEC CPU2000: measuring CPU performance
in the New Millennium. Computer, 33(7):28–35, Jul 2000.

[12] J. Herter, J. Reineke, and R. Wilhelm. CAMA: Cache-
Aware Memory Allocation for WCET Analysis. In Proc.
ECRTS (WIP), pages 24–27, 2008.

[13] S. Mohan and F. Mueller. Merging state and preserving
timing anomalies in pipelines of high-end processors. In
Proc. RTSS, pages 467–477, 2008.

[14] F. Mueller. Timing analysis for instruction caches. Real-
Time Syst., 18(2-3):217–247, 2000.

[15] I. Puaut and C. Pais. Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison. Tech-
nical Report PI 1818, IRISA, 2007.

[16] P. Puschner. Experiments with WCET-oriented program-
ming and the single-path architecture. In Proc. WORDS,
Feb. 2005.

[17] P. Puschner and A. Burns. Guest editorial: A review of
wcet analysis. Real-Time Syst., 18(2-3):115–128, 2000.

[18] H. Ramaprasad and F. Mueller. Bounding preemption delay
within data cache reference patterns for real-time tasks. In
Proc. RTAS, pages 71–80, 2006.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Trans. Program. Lang. Syst.,
24(3):217–298, 2002.

[20] M. Schoeberl. Time-predictable computer architecture.
EURASIP Journal on Embedded Systems, vol. 2009, Article
ID 758480:17 pages, 2009.

[21] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
WCET Centric Data Allocation to Scratchpad Memory. In
Proc. RTSS, pages 223–232, 2005.

[22] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic
allocation for scratch-pad memory using compile-time deci-
sions. Trans. on Embedded Computing Sys., 5(2):472–511.

[23] J. Whitham. Source code and raw data for experiments.
http://www.jwhitham.org.uk/c/smmu.html.

[24] J. Whitham and N. Audsley. Implementing Time-
Predictable Load and Store Operations. In Proc. EMSOFT,
pages 265–274, 2009.

[25] J. Whitham and N. Audsley. The Scratchpad Memory Man-
agement Unit for Microblaze: Implementation, Testing, and
Case Study. Technical Report YCS-2009-439, University of
York, 2009.

[26] J. Whitham and N. Audsley. Studying the Applicability of
the Scratchpad Memory Management Unit. In Proc. RTAS,
pages 205–214, 2010.

[27] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenström. The worst-case execution-time
problem—overview of methods and survey of tools. Trans.
on Embedded Computing Sys., 7(3):1–53, 2008.

[28] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In Proc. PLDI, pages 30–44, 1991.

